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ABSTRACT

Random variables X Tty Xn are said to have a joint distribution with

1’
Weibull minimums after arbitrary scaling if min(aixi) has a one dimensional
Weibull distribution for arbitrary constants :i>0’ i=1, ..., n. Some
properties of this class are demonstrated, and some examples are given which
show the existence of a number of distributions belonging to the class. One
of the properties is found to be useful for computing component reliability
importance. The class is seen to contain an absolutely continuous Weibull
distribution which can be generated from independent uniform and gamma distri-
butions.\

N
Key words and phrases: multivariate Weibull distributions, Weibull minimums

after arbitrary scaling, hazard gradient, component reliability importance,

Gumbel's distribution.
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1. INTRODUCTION

In the following F(5)= P(Xl>x s Xn>xn) is the survival function of

1)

non-negative random variables X g Xn and R = -log F is the hazard function

1’
which is non-decreasing and defined for non-negative x.

The Weibull distribution, F(x) = exp(—kxa), x>0, has become an important,
often used, model for lifelength. Several multivariate extensions have been
suggested ([7], [8], [11]). However, the extensions appear to have little in
common with the univariate Weibull distribution except that the marginal
distributions are Weibull. An exception is the Weibull distribuion mentioned
by Marshall and Olkin [11], and also discussed in [9], which has the following
form:

- a
F(x) = exp(-I A g max (xg

)), x>0 (1:1)
J ieJ £

with a>0 and XJ>0 for JeJ where the sets J are elements of the class J of non-
empty subsets of {1, ..., n} having the property that for each i, ieJ for sone
JeJ. For a=1, (1.1) is the Marshall-Olkin [11] multivariate exponential distri-
bution.

The purpose of this paper is to develop some properties of the class of
multivariate distributions having Weibull minimums after arbitrary scaling.

Random variables X 2 Xn have such a distribution if for arbitrary constants

10 e

ai>0. ;1 SO , min(aixi) has a one dimensional Weibull distribution,
i

P(min(a X, )>t) = exp(-k(a)t”), t>0 (1.2)
. 2

for some a>0 and constant k(a)>0. The Weibull distribution (1.1) belongs to this

class, as do a number of other distributions which are presented in the next

section.




A closely related subclass of distributions satisfying (1.2) are distri-
butions having exponential minimums after arbitrary scaling. Esary and Marshall
[5] discuss this class and other classes of exponential distributions, and their
application to computing system reliability.

The following section contains examples and comparisons of various classes
of Weibull distributions which show that distributions satisfying (1.2) are
distinct from other classes of Weibull distributions. In later sections failure
rate, dependence, and distributional properties of this class are presented.

A useful application is made to computing the reliability importance of system
components. The final section is concerned with generating an absolutely
continuous Weibull distribution (which satisfies (1.2)) from independent random

variables, and the effect of the parameters on the covariance.

2. CLASSES OF WEIBULL DISTRIBUTIONS

To clarify differences between distributions satisfying (1.2) and other
classes of multivariate Weibull distributions it is helpful to consider a
hierarchy of classes of multivariate Weibull distributions.

Consider random variables X o xn having a joint distribution which

1!
satisfies one of the following conditions.
(a) Xl’ Feory Xn are independent and each Xi has a Weibull distribution
of the form Fi(t) = exp(—Aita), t>0, 1=1, ..., n.

(b) Xl, vin oy Xn have a multivariate Weibull distribution generated from

independent Weibull distributions by letting

Xi = min(ZJ: Tedy, dsly vy Wy

where the sets J are elements of a class J of nonempty subsets of

{1, ..., n} having the property that for each i, ieJ for some JeJ,




-

3
and the random variables ZJ, JeJ, are independent having Weibull
distributions of the form ?J(t) = exp(-AJta). H

(c) Xl, T Xn have a joint distribution satisfying (1.2).

(d) Xl, S atalsy Xn have a joint distribution with Weibull minimums, that is,

P(min(X,)>t) = exp(-A tu)
i S
ieS

for some XS>0 and all nonempty subsets S of {1, ..., n}.

(e) Each Xi, i=1l, ..., n has a Weibull distribution of the form

?i(t) = exp(—xita).

The classes a-e contain the corresponding classes of multivariate exponential
distributions constructed by Esary and Marshall [5]. Each class satisfies certain
multivariate closure properties similar to those that they describe. See their
properties Pl’ P2, P3 and PA' Also each class a-e is a subclass of the one
which follows it.

The condition (b) is an alternative and equivalent way to describe the
distributions of (1.1). The representation of (1.1) in terms of independent
random variables is discussed in [9].

The examples which follow show the classes a-e are distinct since each

class is seen to contain distributions not belonging to the class preceeding it.

= 3 o a a a _a
Example 2.1. Let F(xl,xz) = exp| ()\lxl + A%y + Ao max(xl,xz)] with A, >0,

1

A,>0, A 230 and a>0. This is the bivariate version of the multivariate distri-

& 1

butions satisfying (b). This distribution occurs 1if X, = min(Zl,le) and

il

X, = min(Zz,le) where Zl’ ZZ’ 212 are independent with Weibull distributions

2

o o a
P(Zl>t) exp(—Alt ¥ P(22>t) exp(-Azt p P(212>t) = exp(-xlzt ) 1If A12>0

then the joint distribution of X satisfies (b) but not (a).

1'%

Example 2.2. Let xl,x have the joint distribution of example 2.1 and let

2
o -1 o — a a a o
Y1 ey xi, with ci>0, i=1,2. Then F(yl,yz) = [-(J\lcly1 + Azczy2

-~aa




a a :
-+ A12 max(clyl,czyz)]. The distribution of Yl’YZ has a singular
component on the line €L Yy = €y Yy Thus it differs from the distributions
satisfying (b). If cltc2 the joint distribution of Y1 and Y2 satisfies (c) but
not (b).

Example 2.3. E(xl,xz) = exp[—(x?+xg)5] satisfies (¢) but not (b). In a later
section it is shown that this distribution can be generated by a transformation
of independent random variables. E(xl,xz) is absolutely continuous and therefore

cannot satisfy (b). That it satisfies (c) can be verified by computing

- =4 &
P(min(a X, 6 )>t) = exp[—tz(a 4 + a A)i], £>0, for a, >0, 1=1,2.
i i%i 1 2 = i
Example 2.4. Let ﬁ(xl,xz) = E(xl,xz)F(xl,xz) where F is the distribution of

example 2.1 with a=2 and E(xl,xz) is the distribution of example 2.3. ﬁ(xl,xz)

is not absolutely continuous and satisfies (c) but not (b).

Example 2.5. Let xl,xz have the distribution E(xl,xz) of example (2.3) and let
: = 5 8, . 8% )
Yl,Y2 have the distribution F(yl’y2) = exp| (2yl + 2y2) It Let (Tl’TZ) = (xl’XZ)

with probability p and (TI'T ) = (Yl’YZ) with probability 1-p. Then T T2 have

2 h i
the distribution of the mixture ﬁ(tl,tz) =p a(tl,tz) + (l-p)F(tl,tz). The

distribution H satisfies (d) but not (c).

Example 2.6. Let F(xl,xz) = Fl(xl)iz(xz)[l + Y(1-¥i(x1))(1—F2(x2))] where

- c
F.(x,) = exp(-x >0, x,>0, j=1,2 are univariate Weibull distributions.

h|
c
e R wd
This bivariate Weibull distribution is mentioned in [7] as a special case of
the Morgenstern, Gumbel, Farlie distributions. It satisfies (e) when €1=Css

but does not satisfy (d).

In summary, the class of Weibull distributions (1.2) contains independent
Weibull distributions satisfying (a) and the class of Weibull distributions (b)

arising from the Marshall-Olkin [11] models. Examples (2.2), (2.3) and (2.4)

skt
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show the existence of other Weibull distributions satisfying (1.2) which are

distinct from the classes (a) and (b).

3. PROPERTIES OF DISTRIBUTIONS HAVING WEIBULL MINIMUMS
AFTER ARBITRARY SCALING

In the present section it is assumed that f(g) = exp(-R(x)) is a continuous
function of x, but not necessarily absolutely continuous, and that the hazard
gradient, rj(g) = 5%— R(x), j=1, ..., n exists except possibly on a finite set

]

of values of x,. Further, it is assumed that rj(g) is a continuous function of

3

x, with the exception of the points where it fails to exist.

3

It follows that the survival function can be recovered by integrating in the

following way,

© = T
ij rj(xl,...,xj_l,t,xj+1,...,xn)F(xl,...,xj_l,t,xj+1,...,xn)dt (31) ?

=.F(x).

~

The equality holds irrespective of the way r (x) is defined at its discontinuity

J

points. However, to express the results of this section we let rj(g) represent :

the right hand derivative which is assumed to exist for all x.
Absolutely continuous distributions satisfy such conditions as do also the

multivariate Weibull distributions satisfying (1.1). For the distribution (1.1),

F(x) is a continuous function of x and r (x) = I A_ a x?-ll (x) where I (x) =1
= 2 g A IR
J>max{xi: ieJ and i#¥j}. It is seen that rj(g)

is continuous in x, except on a finite set of values and can be defined at the

i

exceptional values by the right hand derivative.

(and zero otherwise) if jeJ and x

The hazard gradient is useful for describing failure rate properties of

multivariate distributions. In [7] it is shown that r (x) can be interpreted as

3

the failure rate of the conditional distributions of Xj given that x1>xi,

i=l, ..., n. It reduces to the usual concept of failure rate when the distribution

43,




involves independent random variables. Further discussion of the hazard gradient

is given in [10].

A distribution F satisfies (1.2) if and only if the hazard function satisfies

the following functional equation:

R(tx) = taR(g) for some
(3.2)
a>0 whenever t>0 and x>0.

Equation (3.2) is the basis in this section for developing properties of distri-

butions having Weibull minimums after arbitrary scaling.

Theorem 1. Let X oy xn have a joint distribution satisfying (1.2) with a>0

1'
given by (1.2) and having the hazard gradient rj(g), J=1. ..¢y ns Then
..lr

]

(x) is nonincreasing in x

a. r.(tx) = % (x), j=1, ..., n for all vectors x>0 and scalar t>0.

h|
Ba ' r for Ak}, 1=1; ..., Q.

]
j 3 j=1, ..., n providing a>1l.
a ~1

Proof: a. Using (3.2) write R(x) = ij(lj, xj 51

represents a vector with a one in the jth position and the remaining elements
have been multiplied by the scalar x}l. For 1#j, ri(ﬁ) = x? 3%;.R<13’x315)
~1 a-1

X) = ¢t
3 ¥

i

c. r,.(x) is nondecreasing in x

x) where the notation (1j, x

X)

a=1 ., =1
xj ri(lJ’xj x). Therefore, ri(tg) (tx

x>0 and t>0.

)a-l

5 ri(lj,x

ri(g), for any

b. First observe from (3.2) that = f(tg) = t% (5)?(t§) for t>0. Since

9

xj j
-t 3%—'f(t§) is non-increasing in X for 1#j, and all t>0, and since

k|
1im -t_u'—é— F(tx) = r,(x), we have that r, (x) is non-increasing in x, for i#j.
t-0t axj e R b B i
a-1 -1 -]

c. From part a, rj(g) = x, rJ(lj,xJ X). Also from part b, rj(lj,xJ x) is non-

decreasing in x,, and since by assumption a>l, it follows that r, (x) is non-

3 3

g

decreasing in x




-

As pointed out in references [2] and [4] a form of positive dependence is
likely to be a reasonable assumption for many reliability problems. For random

variables X Xn satisfying (1.2), part b of the theorem can be used to

10 ceeo
show that each subset S of the variables is right tail increasing (See [4] for
a discussion of right tail increasing) in the remaining set S. That is, the

conditional probability

P(X>x;, 165|X >y , §68) = exp[-R(x, 9)+R(Q,)]

is nondecreasing in yj, jég. From part b we have 5%“ R(x,y) is nonincreasing in
]

Xy Therefore, §§~ R(x,y) < R(0,y), which says that R(x,y)-R(0,y) is non-

3
oy

increasing in yj, jeS. This proves right tail increasing for distributions (1.2).

For a second application consider X Xn satisfying (1.2) with o>1.

10 oo
This corresponds to min(aixi) having a one dimensional IFR (increasing failure

i
rate) Weibull distribution for each choice of constants ai>0, i=l. <.v, 0, Part c
of the theorem shows that the distributions (1.2) have the property that Johnson

and Kotz [7] call multivariate IHR (increasing hazard rate).

Next consider V = min(Xi) and define the event that Xj coincides with V by
i

X, = V <=5 oy Ui 3
3 ijT;;( 1) (33)

Since for distributions satisfying (b) of section 2 there is positive probability
of tied values, it is important to note when computing P(Xj=V) that equality is
allowed in (3.3).

To develop a special property of distributions satisfying (1.2) let us

write
P(X,=V and V>x) = /° P(min(X,)>t|X,=t)f, (t)dt (3.4)
] X i = ] d
i#j
since the density fj(t) of Xj exists for distributions (1.2).




The integrand in (3.4) is equal to

lim A—lP(min(Xi)}_t and t<X <t+4)
a0t i#§ i
= ., 57T S (3.5)
The integrand is also equal to
P(X,=V|V=t)g(t) (3.6)

3
where g(t) =—-ﬁ% F(t, <., t) is the density function of V. Equating (3.5) and

(3.6) gives the conditional probability,
P(Xj=V|V=t)=rj(t, eess EYF(L, ...,.t)[g(t)]-l (3.7)

The following theorem extends a property of the Marshall-Olkin [11] distri-
bution (see [2]) to the class of distributions having Weibull minimums after

arbitrary scaling.

Theorem 2. Let X G Xn have a joint distribution satisfying (1.2) with hazard

1’
gradient rj(g) computed as the right hand derivative. Then V is independent of
the events Xj=V, §=1L, +.., 1 and P(Xj=V) = rj(l, RIS o Y,

a—lR

Proof: Since for distributions satisfying (1.2), g(t) = at (e AE R, oy )

and from theorem 1, part a, rj(t, ceay EY - ta—lrj(l, ..., 1) it is seen that (3.7)
simplifies to rj(l, seos L)/aR(@, «s., 1). Therefore, P(Xj=VIV=t) is constant in
t which proves the independence of V and X,=V.

j

4. APPLICATION - COMPUTING COMPONENT RELIABILITY IMPORTANCE.

Let t(X) represent the life length of a coherent system having minimal path

sets P Pp and suppose Xl, Xz, ey Xn represent component life lengths.

1°

Then 1(X) = max (Tj) where Tj = min (xm), j=1, ..., p. This representation
J=lyeee,p Mer

of system life length in terms of minimal path sets is discussed in [2].

T T T U T Ry Yy e




Barlow and Proschan [3] define their measure of a component's reliability
importance as the probability that component lifelength coincides with system
life length. If this event occurs the component is said to cause the system to
fail. Since

P(Xi = ©(X)) = P( max (&5

) = X.)
: i
Sl

j

is the probability of the union of p events, the importance measure can be

expressed as fcllows:

P
POY; = t(®) = I P(y=X) - I Plin(ry n) = X))

St P(min(Tl, Src rp) = N, (4.1)

Barlow and Proschan [3] express their formulas for the importance measure in
terms of the system reliability function for the case of independent component
life lengths, and do not mention (4.1).

Noting that min(rj,rk) = min (X ), and so on, it is seen that each term

merqu
of the various sums reduces to computing probabilities like those expressed in
theorem 2. Note also that if i{Pjqu and if Xl, XZ’
continuous distribution then P(min(t ,Tk) = Xi) = P( min (Xm) = Xi) = 0.

i mszqu

e Xn have an absolutely

Other terms may equal zero for the same reason.

To illustrate the application of theorem2 for a two out of three system, let

Xl, XZ’ X3 represent component life lengths having the joint distributions

F(x) = exp[-(xi + 2x§ + 3x§)%]. A two out of three system fails when any two of
its components fail. System life length is 1(X) = max[min(Xl,Xz), min(XZ,Xg),
min(Xl,X3)]. Using (4.1) it is seen that P(X1 = 1(X)) = P(X1 = min(xl,Xz))

+ P(X1 = min(Xl,x3)) - 2P(X1 = min(xl,xz.x3)),since the remnaining terms become
zero for the reason mentioned above. From theorem 2 we have P(X1 = min(xl,xz))

= r,(1,1,0)/R(1,1,0) = 1/3, P(X; = min(X},X;)) = r,;(1,0,1)/R(1,0,1) = 1/,, and

1753




10

P(X =min(X,,X,,%,) = ) (1,1,1)/R(1,1,1) = l/c. Thus the probability that

2’
component #1 causes the system to fail is 1/3 + 1/4 - 1/3 = 1/4. Similar compu-

- - =
tations would show P(X, = 1(X)) = 2/5 and P(X, = (X)) = "/90-

5. AN ABSOLUTELY CONTINUOUS WEIBULL DISTRIBUTION

Consider the following bivariate Weibull distribution:

Flxpoxy) = expl-Opx] + 3,x0)"] (5.1)
with Ri>0, xiiO, i=1,2, £>0 and O<y<l. This distribution has the properties
discussed in section 3. For By=1 it reduces to Gumbel's [6] bivariate exponential
distribution and has several properties in common with the Marshall-Olkin distri-
bution, e.g., exponential marginals, exponential minimums after arbitrary scaling
and the independence property discussed in theorem 2. The distribution easily
extends to n variables.

Let us show that random variables Xl,X having distribution (5.1) can be

2

represented in terms of independent random variables. Such a representation can
be useful for analyzing properties of the distribution and generating random
samples.

Consider the random variables

and their joint distribution given by
el = e Y
G(zl,zz) = exp| (zl+z2) Jis
The joint density function is of the form
- _ y=2, 2 2y-2 3 Y
8(z1,2,) = [Y(1=y) (2 +2,) " “+y" (2 +2,) Jexp[-(z +z,) '].
Consider next the transformation

U= Zl/(21+zz)
- Y
S (zl+22)




Jdi}

2
e )
having the jacobian (l/y)SY

The joint density of U and S is given by
h(u,s) = [(1-y)+ys]e ® (5.6)

O<u<l, O<s<o. Thus U and S are independent random variables with U having a
uniform distribution on the interval (0,1) and the distribution of S is a mixture

of gamma distributions having the density
h(s) = [1-y+ys]e ®, s>0. (5.7)

In summary we have from (5.5) that

iy
z, = Us

Z

" (1-v)st/Y (5.8)

([

are represented in terms of independent random variables U and S.

It is an easy exercise to compute the covariance from the distributions of

U and S:

COV(Z;,2,) = (I/NTQ@/-DTE sy (5.9)

-1 -t ; :
X~1e"Mdt is the gamma function.

where T'(x) = ot
0

The covariance is non-negative.Using formulas 6.1.2 and 6.1.18 for the gamma
function given in [1], it is possible to show that the covariance is decreasing

in vy so that Z, and Z2 are more associated for y taking a value near zero. As

1

y approaches one the covariance becomes zero. For y=1, Z1 and 22 are independent

random variables.
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